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About me
My name is Antonio and I am a final-year PhD candidate based
at the Statistics for Health Economic Evaluation Group at UCL,
where I am supervised by Gianluca Baio and Anna Heath. I am
also an independent consultant specializing in the statistical
aspects of evidence synthesis, HTA and outcomes research.
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About me
My name is Antonio and I am a final-year PhD candidate based
at the Statistics for Health Economic Evaluation Group at UCL,
where I am supervised by Gianluca Baio and Anna Heath. I am
also an independent consultant specializing in the statistical
aspects of evidence synthesis, HTA and outcomes research.

Impact statement
I recently submitted my PhD thesis. There are two sides to the
story it tells. One addresses a substantive problem in HTA, which
is the application of population-adjusted indirect comparisons
(e.g. MAIC, STC). The other side of the story highlights the
importance of carefully considering whether a marginal or
conditional treatment effect is of interest in HTA.
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Multivariable outcome regression in HTA
The treatment coefficient of a multivariable regression of outcome on
treatment and baseline covariates often informs average effectiveness in
health economic evaluations. Some examples:
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Multivariable outcome regression in HTA
The treatment coefficient of a multivariable regression of outcome on
treatment and baseline covariates often informs average effectiveness in
health economic evaluations. Some examples:

1. Controlling for the effect of prognostic factors with individual patient
data (IPD) from an observational or non-randomized study

2. Correcting for empirical confounding caused by chance imbalances in
baseline covariates with IPD from a randomized controlled trial (RCT)

3. Accounting for differences in effect measure modifiers across a
connected network of RCTs in a network meta-regression, either with
IPD or aggregate-level data (ALD)

4. Transporting or generalizing inferences from a study lacking external
validity to the target population for the decision

5. Performing a pairwise population-adjusted indirect comparison to
compare treatments with a common comparator arm across trials
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Multivariable outcome regression in HTA
The treatment coefficient of a multivariable regression of outcome on
treatment and baseline covariates often informs average effectiveness in
health economic evaluations. Some examples:

1. Controlling for the effect of prognostic factors with individual patient
data (IPD) from an observational or non-randomized study

2. Correcting for empirical confounding caused by chance imbalances in
baseline covariates with IPD from a randomized controlled trial (RCT)

3. Accounting for differences in effect measure modifiers across a
connected network of RCTs in a network meta-regression, either with
IPD or aggregate-level data (ALD)

4. Transporting or generalizing inferences from a study lacking external
validity to the target population for the decision

5. Performing a pairwise population-adjusted indirect comparison to
compare treatments with a common comparator arm across trials

This presentation deals with Scenario 5, a special case of Scenario 4
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Issues
The estimated effect may have a conditional interpretation, as opposed
to the population-level interpretation that is required for
reimbursement decisions made by bodies such as NICE

When effect measures are non-collapsible, there may be sizable
differences between marginal and conditional estimands, even in an
ideal RCT

Non-collapsibility occurs in logistic regression analysis for the odds
ratio, in the Cox proportional hazards model for the hazard ratio, and
for most measures of effect involving non-linear regressions

Estimators targeting different estimands will have different variances
for both collapsible and non-collapsible measures of effect. Hence, these
quantify parametric uncertainty differently.

This leads to the incorrect propagation of uncertainty to the wider
health economic decision model. Dangerous for probabilistic sensitivity
analyses.
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Issues
The estimated effect may have a conditional interpretation, as opposed
to the population-level interpretation that is required for
reimbursement decisions made by bodies such as NICE

When effect measures are non-collapsible, there may be sizable
differences between marginal and conditional estimands, even in an
ideal RCT

Non-collapsibility occurs in logistic regression analysis for the odds
ratio, in the Cox proportional hazards model for the hazard ratio, and
for most measures of effect involving non-linear regressions

Estimators targeting different estimands will have different variances
for both collapsible and non-collapsible measures of effect. Hence, these
quantify parametric uncertainty differently.

This leads to the incorrect propagation of uncertainty to the wider
health economic decision model. Dangerous for probabilistic sensitivity
analyses.

The solution is the marginalization of the conditional effect estimates
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Population-adjusted indirect comparisons
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Population-adjusted indirect comparisons
Our case study is a very common scenario in oncology HTAs:
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Population-adjusted indirect comparisons
Our case study is a very common scenario in oncology HTAs:

Active treatment A needs to be compared to active treatment B for
reimbursement purposes

Anchored scenario: both treatments have been evaluated in RCTs
against a common comparator C, but not against each other

The manufacturer submitting evidence to HTA bodies has access to IPD
from its own AC RCT. No IPD, only published ALD, are available for the
competitor's BC RCT.

Standard methods are biased where there is treatment effect
heterogeneity over variables that vary in distribution across trials
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Requirements
Covariate-adjusted effect for A vs. B estimated in the BC population. Indirect
comparison carried out in the “linear predictor” scale; using additive effects
for a given linear predictor:

Δ̂
(BC)

AB = Δ̂
(BC)

AC − Δ̂
(BC)

BC
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Requirements
Covariate-adjusted effect for A vs. B estimated in the BC population. Indirect
comparison carried out in the “linear predictor” scale; using additive effects
for a given linear predictor:

 is the estimated marginal effect of B vs. C, available from the RCT
publication. Any conditional estimate is likely incompatible.

 should target a marginal effect to inform reimbursement
decisions at the population level

 must target a marginal effect that is compatible with .
Estimand incompatibility may produce bias (Remiro-Azócar et al.
2021a).
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Requirements
Covariate-adjusted effect for A vs. B estimated in the BC population. Indirect
comparison carried out in the “linear predictor” scale; using additive effects
for a given linear predictor:

 is the estimated marginal effect of B vs. C, available from the RCT
publication. Any conditional estimate is likely incompatible.

 should target a marginal effect to inform reimbursement
decisions at the population level

 must target a marginal effect that is compatible with .
Estimand incompatibility may produce bias (Remiro-Azócar et al.
2021a).

Weighting (MAIC) or outcome regression can be used to generate .
Outcome regression is more statistically precise and efficient than
weighting (Remiro-Azócar et al. 2021b).
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Setup
## load packages
# for non-parametric bootstrap in maximum-likelihood G-computation
if (!require("boot")) install.packages("boot")
# for simulating BC (ALD study) covariates from Gaussian copula
if (!require("copula")) install.packages("copula")
# for outcome regression and prediction in Bayesian G-computation
if (!require("rstanarm")) install.packages("rstanarm")

set.seed(555) # set seed for reproducibility
rm(list = ls(all = TRUE)) # clear directory

15 / 55



Setup
## load packages
# for non-parametric bootstrap in maximum-likelihood G-computation
if (!require("boot")) install.packages("boot")
# for simulating BC (ALD study) covariates from Gaussian copula
if (!require("copula")) install.packages("copula")
# for outcome regression and prediction in Bayesian G-computation
if (!require("rstanarm")) install.packages("rstanarm")

set.seed(555) # set seed for reproducibility
rm(list = ls(all = TRUE)) # clear directory

getRversion()

## [1] '4.1.0'
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Setup
## load packages
# for non-parametric bootstrap in maximum-likelihood G-computation
if (!require("boot")) install.packages("boot")
# for simulating BC (ALD study) covariates from Gaussian copula
if (!require("copula")) install.packages("copula")
# for outcome regression and prediction in Bayesian G-computation
if (!require("rstanarm")) install.packages("rstanarm")

set.seed(555) # set seed for reproducibility
rm(list = ls(all = TRUE)) # clear directory

getRversion()

## [1] '4.1.0'

Data
# Load fake (simulated) data
AC.IPD <- read.csv("AC_IPD.csv") # load AC patient-level data
BC.ALD <- read.csv("BC_ALD.csv") # load BC aggregate-level data
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The AC IPD (200 subjects) consists of individual-level baseline covariates,
treatment and binary outcomes, e.g. the occurrence of an adverse event

knitr::kable(round(head(AC.IPD),digits=2))

X1 X2 X3 X4 trt y
0.44 0.67 0.93 0.09 1 0
0.06 0.60 0.04 0.60 1 1

-0.08 0.68 0.93 -0.11 1 0
-0.39 0.57 -0.32 0.03 1 0
1.01 0.82 0.93 0.84 1 1
0.19 0.20 0.35 0.16 1 0
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The AC IPD (200 subjects) consists of individual-level baseline covariates,
treatment and binary outcomes, e.g. the occurrence of an adverse event

knitr::kable(round(head(AC.IPD),digits=2))

X1 X2 X3 X4 trt y
0.44 0.67 0.93 0.09 1 0
0.06 0.60 0.04 0.60 1 1

-0.08 0.68 0.93 -0.11 1 0
-0.39 0.57 -0.32 0.03 1 0
1.01 0.82 0.93 0.84 1 1
0.19 0.20 0.35 0.16 1 0

The BC ALD (600 subjects) consists of aggregate-level baseline covariates
and summary outcomes, i.e., the marginal covariate moments ("Table 1" of
the RCT publication) and a contingency table for the event counts

round(BC.ALD,digits=2)

##   mean.X1 mean.X2 mean.X3 mean.X4 sd.X1 sd.X2 sd.X3 sd.X4 y.B.sum y.B.bar N.B
## 1    0.59    0.64    0.59     0.6  0.39   0.4  0.41   0.4     182    0.46 400
##   y.C.sum y.C.bar N.C
## 1     149    0.74 200
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Covariate simulation
We will marginalize with respect to a hypothetical BC pseudo-population.
Individual-level covariates  are generated using a Gaussian copula.

We use normally-distributed marginals with the BC means and standard
deviations, and the pairwise linear correlations of the AC IPD. 
subjects are simulated, large enough to minimize sampling variability.

x
∗

N
∗

= 1000
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Covariate simulation
We will marginalize with respect to a hypothetical BC pseudo-population.
Individual-level covariates  are generated using a Gaussian copula.

We use normally-distributed marginals with the BC means and standard
deviations, and the pairwise linear correlations of the AC IPD. 
subjects are simulated, large enough to minimize sampling variability.

# matrix of pairwise correlations between IPD covariates  
rho <- cor(AC.IPD[,c("X1","X2","X3","X4")]) 
#  covariate simulation for BC trial using copula package
cop <- normalCopula(param=c(rho[1,2],rho[1,3],rho[1,4],rho[2,3],
                            rho[2,4],rho[3,4]), 
                    dim=4, dispstr="un") # AC IPD pairwise correlations
# sample covariates from approximate joint distribution using copula
mvd <- mvdc(copula=cop, margins=c("norm", "norm", # Gaussian marginals
                                  "norm", "norm"), 
            # BC covariate means and standard deviations
            paramMargins=list(list(mean=BC.ALD$mean.X1, sd=BC.ALD$sd.X1),
                              list(mean=BC.ALD$mean.X2, sd=BC.ALD$sd.X2),       
                              list(mean=BC.ALD$mean.X3, sd=BC.ALD$sd.X3),
                              list(mean=BC.ALD$mean.X4, sd=BC.ALD$sd.X4)))
# simulated BC pseudo-population of size 1000 to stabilize sampling distribution
x_star <- as.data.frame(rMvdc(n=1000, mvd))
colnames(x_star) <- c("X1", "X2", "X3", "X4")

x
∗

N
∗

= 1000
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Outcome regression
Our working regression is a generalized linear model of the observed
outcome  on the covariates  and treatment , fitted to the AC IPD:y x t

g(μn) = β0 + xnβ1 + (βt + x
(EM)
n β2)1 (tn = A)
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Outcome regression
Our working regression is a generalized linear model of the observed
outcome  on the covariates  and treatment , fitted to the AC IPD:

: expected outcome of subject  on the natural outcome scale, e.g. the
probability scale for binary outcomes

: appropriate invertible canonical link function, e.g. the 
 for binary outcomes in logistic regression

: vector of regression coefficients for the prognostic variables

: vector of interaction coefficients for the effect modifiers (modifying
the effect of treatment A vs. C)

: conditional treatment effect for A vs. C

y x t

g(μn) = β0 + xnβ1 + (βt + x
(EM)
n β2)1 (tn = A)

μn n

g(⋅)

logit(μn) = ln (μn/(1 − μn))

β1

β2

βt
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Outcome regression
Our working regression is a generalized linear model of the observed
outcome  on the covariates  and treatment , fitted to the AC IPD:

: expected outcome of subject  on the natural outcome scale, e.g. the
probability scale for binary outcomes

: appropriate invertible canonical link function, e.g. the 
 for binary outcomes in logistic regression

: vector of regression coefficients for the prognostic variables

: vector of interaction coefficients for the effect modifiers (modifying
the effect of treatment A vs. C)

: conditional treatment effect for A vs. C

In the context of G-computation, the working model is called the Q-model

y x t

g(μn) = β0 + xnβ1 + (βt + x
(EM)
n β2)1 (tn = A)

μn n

g(⋅)

logit(μn) = ln (μn/(1 − μn))

β1

β2

βt
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Parametric G-computation
The goal is to integrate, average or marginalize out the model for the
conditional expectation over the relevant joint covariate distribution

25 / 55



Parametric G-computation
The goal is to integrate, average or marginalize out the model for the
conditional expectation over the relevant joint covariate distribution

Maximum-likelihood estimation (MLE)
Fit the Q-model to the AC IPD, , using MLE:

# outcome logistic regression fitted to IPD using maximum likelihood
outcome.model <- glm(y~X3+X4+trt*X1+trt*X2, data=AC.IPD, family=binomial)

DAC = (x, t, y)
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Parametric G-computation
The goal is to integrate, average or marginalize out the model for the
conditional expectation over the relevant joint covariate distribution

Maximum-likelihood estimation (MLE)
Fit the Q-model to the AC IPD, , using MLE:

# outcome logistic regression fitted to IPD using maximum likelihood
outcome.model <- glm(y~X3+X4+trt*X1+trt*X2, data=AC.IPD, family=binomial)

Leaving the simulated covariates  at their set values, we apply the
maximum-likelihood coefficients  to predict a pair of
hypothetical outcomes for each subject (under treatments A and C):

# hypothetical datasets
data.trtA <- data.trtC <- x_star
# intervene on treatment while keeping set covariates fixed
data.trtA$trt <- 1 # dataset where everyone receives treatment A
data.trtC$trt <- 0 # dataset where all observations receive C

DAC = (x, t, y)

x∗

^β = (β̂0, ^β
1
, ^β

2
, β̂ t)
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Plug treatment  into the regression fit for each simulated individual to
compute the conditional expectation when all subjects are under :

A

A

μ̂A (x∗) = ∑N ∗

i=1 g−1(β̂0 + x∗
i β̂1 + β̂ t + x

∗(EM)
i β̂2)1

N ∗
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Plug treatment  into the regression fit for each simulated individual to
compute the conditional expectation when all subjects are under :

# predict hypothetical event probs, conditional on treatment/covariates
hat.mu.A.i <- predict(outcome.model, type="response", newdata=data.trtA)
data.trtA$hat.mu <- hat.mu.A.i
hat.mu.A <- mean(hat.mu.A.i) # mean probability prediction under A

A

A

μ̂A (x∗) = ∑N ∗

i=1 g−1(β̂0 + x∗
i β̂1 + β̂ t + x

∗(EM)
i β̂2)1

N ∗
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Plug treatment  into the regression fit for each simulated individual to
compute the conditional expectation when all subjects are under :

# predict hypothetical event probs, conditional on treatment/covariates
hat.mu.A.i <- predict(outcome.model, type="response", newdata=data.trtA)
data.trtA$hat.mu <- hat.mu.A.i
hat.mu.A <- mean(hat.mu.A.i) # mean probability prediction under A

By plugging treatment  into the regression fit for every simulated
observation, we obtain the mean predicted outcome when all units are
under :

A

A

μ̂A (x∗) = ∑N ∗

i=1 g−1(β̂0 + x∗
i β̂1 + β̂ t + x

∗(EM)
i β̂2)1

N ∗

C

C

μ̂C (x∗) = ∑N ∗

i=1 g−1(β̂0 + x∗
i β̂1)1

N ∗
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Plug treatment  into the regression fit for each simulated individual to
compute the conditional expectation when all subjects are under :

# predict hypothetical event probs, conditional on treatment/covariates
hat.mu.A.i <- predict(outcome.model, type="response", newdata=data.trtA)
data.trtA$hat.mu <- hat.mu.A.i
hat.mu.A <- mean(hat.mu.A.i) # mean probability prediction under A

By plugging treatment  into the regression fit for every simulated
observation, we obtain the mean predicted outcome when all units are
under :

# predict hypothetical event probs, conditional on treatment/covariates
hat.mu.C.i <- predict(outcome.model, type="response", newdata=data.trtC)
data.trtC$hat.mu <- hat.mu.C.i
hat.mu.C <- mean(hat.mu.C.i) # mean probability prediction under C

A

A

μ̂A (x∗) = ∑N ∗

i=1 g−1(β̂0 + x∗
i β̂1 + β̂ t + x

∗(EM)
i β̂2)1

N ∗

C

C

μ̂C (x∗) = ∑N ∗

i=1 g−1(β̂0 + x∗
i β̂1)1

N ∗
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Plug treatment  into the regression fit for each simulated individual to
compute the conditional expectation when all subjects are under :

# predict hypothetical event probs, conditional on treatment/covariates
hat.mu.A.i <- predict(outcome.model, type="response", newdata=data.trtA)
data.trtA$hat.mu <- hat.mu.A.i
hat.mu.A <- mean(hat.mu.A.i) # mean probability prediction under A

By plugging treatment  into the regression fit for every simulated
observation, we obtain the mean predicted outcome when all units are
under :

# predict hypothetical event probs, conditional on treatment/covariates
hat.mu.C.i <- predict(outcome.model, type="response", newdata=data.trtC)
data.trtC$hat.mu <- hat.mu.C.i
hat.mu.C <- mean(hat.mu.C.i) # mean probability prediction under C

We now have two counterfactual datasets: what outcomes might have been
observed had subjects in a different population, in which the A vs. C trial
was not conducted, received treatment?

A

A

μ̂A (x∗) = ∑N ∗

i=1 g−1(β̂0 + x∗
i β̂1 + β̂ t + x

∗(EM)
i β̂2)1

N ∗

C

C

μ̂C (x∗) = ∑N ∗

i=1 g−1(β̂0 + x∗
i β̂1)1

N ∗
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The BC pseudo-population under treatment A:

knitr::kable(round(head(data.trtA),digits=2))

X1 X2 X3 X4 trt hat.mu
-0.77 0.25 0.22 0.08 1 0.10
0.49 0.67 0.13 0.81 1 0.40
0.39 1.23 0.74 0.99 1 0.81
0.54 0.63 0.66 0.24 1 0.38
1.32 0.41 0.59 0.54 1 0.42
0.17 0.64 0.16 -0.22 1 0.13
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The BC pseudo-population under treatment A:

knitr::kable(round(head(data.trtA),digits=2))

X1 X2 X3 X4 trt hat.mu
-0.77 0.25 0.22 0.08 1 0.10
0.49 0.67 0.13 0.81 1 0.40
0.39 1.23 0.74 0.99 1 0.81
0.54 0.63 0.66 0.24 1 0.38
1.32 0.41 0.59 0.54 1 0.42
0.17 0.64 0.16 -0.22 1 0.13

The BC pseudo-population under treatment C:

knitr::kable(round(head(data.trtC),digits=2))

X1 X2 X3 X4 trt hat.mu
-0.77 0.25 0.22 0.08 0 0.47
0.49 0.67 0.13 0.81 0 0.75
0.39 1.23 0.74 0.99 0 0.97
0.54 0.63 0.66 0.24 0 0.72
1.32 0.41 0.59 0.54 0 0.62
0.17 0.64 0.16 -0.22 0 0.45
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Estimate the marginal treatment effect for A vs. C by transforming from the
natural outcome scale to the linear predictor scale and calculating the
difference between the average linear predictions:

Δ̂
(BC)

AC = g (μ̂A(x
∗)) − g (μ̂C(x

∗))
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Estimate the marginal treatment effect for A vs. C by transforming from the
natural outcome scale to the linear predictor scale and calculating the
difference between the average linear predictions:

# marginal A vs. C log-odds ratio (mean difference in expected log-odds)  
# estimated by transforming from probability to linear predictor scale 
hat.Delta.AC <- log(hat.mu.A/(1-hat.mu.A)) - log(hat.mu.C/(1-hat.mu.C))    
# hat.Delta.AC <- qlogis(hat.mu.A) - qlogis(hat.mu.C) 
hat.Delta.AC

## [1] -1.106043

Δ̂
(BC)

AC = g (μ̂A(x
∗)) − g (μ̂C(x

∗))
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Estimate the marginal treatment effect for A vs. C by transforming from the
natural outcome scale to the linear predictor scale and calculating the
difference between the average linear predictions:

# marginal A vs. C log-odds ratio (mean difference in expected log-odds)  
# estimated by transforming from probability to linear predictor scale 
hat.Delta.AC <- log(hat.mu.A/(1-hat.mu.A)) - log(hat.mu.C/(1-hat.mu.C))    
# hat.Delta.AC <- qlogis(hat.mu.A) - qlogis(hat.mu.C) 
hat.Delta.AC

## [1] -1.106043

Different summary measures of the marginal contrast, e.g. odds ratios,
relative risks or risk differences, can be produced by manipulating the
conditional expectations differently, mapping these to other scales:

MOR <- (hat.mu.A/(1-hat.mu.A))/(hat.mu.C/(1-hat.mu.C)) # marginal odds ratio for
MRR <- hat.mu.A/hat.mu.C # marginal relative risk for A vs. C
MRD <- hat.mu.A-hat.mu.C # marginal risk difference for A vs. C

Δ̂
(BC)

AC = g (μ̂A(x
∗)) − g (μ̂C(x

∗))
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Estimate the marginal treatment effect for A vs. C by transforming from the
natural outcome scale to the linear predictor scale and calculating the
difference between the average linear predictions:

# marginal A vs. C log-odds ratio (mean difference in expected log-odds)  
# estimated by transforming from probability to linear predictor scale 
hat.Delta.AC <- log(hat.mu.A/(1-hat.mu.A)) - log(hat.mu.C/(1-hat.mu.C))    
# hat.Delta.AC <- qlogis(hat.mu.A) - qlogis(hat.mu.C) 
hat.Delta.AC

## [1] -1.106043

Different summary measures of the marginal contrast, e.g. odds ratios,
relative risks or risk differences, can be produced by manipulating the
conditional expectations differently, mapping these to other scales:

The estimated absolute outcomes  and  are sometimes desirable
in health economic models and in unanchored comparisons

MOR <- (hat.mu.A/(1-hat.mu.A))/(hat.mu.C/(1-hat.mu.C)) # marginal odds ratio for
MRR <- hat.mu.A/hat.mu.C # marginal relative risk for A vs. C
MRD <- hat.mu.A-hat.mu.C # marginal risk difference for A vs. C

Δ̂
(BC)

AC = g (μ̂A(x
∗)) − g (μ̂C(x

∗))

μ̂A(x
∗) μ̂C(x

∗)

38 / 55



Variance estimation

It is not easy to derive the standard error analytically when the marginal
estimate is a non-linear function of the components of 

We shall resample using the ordinary non-parametric bootstrap

β̂
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Variance estimation

It is not easy to derive the standard error analytically when the marginal
estimate is a non-linear function of the components of 

We shall resample using the ordinary non-parametric bootstrap

# this function will be bootstrapped
gcomp.ml <- function(data, indices) {
  dat = data[indices,]
  # outcome logistic regression fitted to IPD using maximum likelihood
  outcome.model <- glm(y~X3+X4+trt*X1+trt*X2, data=dat, family=binomial)
  # hypothetical datasets
  data.trtA <- data.trtC <- x_star
  # intervene on treatment while keeping set covariates fixed
  data.trtA$trt <- 1 # dataset where everyone receives treatment A
  data.trtC$trt <- 0 # dataset where all observations receive C
  # predict hypothetical event probs, conditional on treatment/covariates
  hat.mu.A.i <- predict(outcome.model, type="response", newdata=data.trtA)
  hat.mu.C.i <- predict(outcome.model, type="response", newdata=data.trtC)
  hat.mu.A <- mean(hat.mu.A.i) # mean probability prediction under A
  hat.mu.C <- mean(hat.mu.C.i) # mean probability prediction under C
  # marginal A vs. C log-odds ratio (mean difference in expected log-odds)  
  # estimated by transforming from probability to linear predictor scale 
  hat.Delta.AC <- log(hat.mu.A/(1-hat.mu.A)) - log(hat.mu.C/(1-hat.mu.C))    
  # hat.Delta.AC <- qlogis(hat.mu.A) - qlogis(hat.mu.C) 
  return(hat.Delta.AC)
}

β̂
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We use 1,000 resamples, as increasing further the number of resamples
produces minimal gains in estimation precision and accuracy

# non-parametric bootstrap with 1000 resamples
resamples <- 1000
boot.object <- boot::boot(data=AC.IPD, statistic=gcomp.ml, R=resamples)
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We use 1,000 resamples, as increasing further the number of resamples
produces minimal gains in estimation precision and accuracy

# non-parametric bootstrap with 1000 resamples
resamples <- 1000
boot.object <- boot::boot(data=AC.IPD, statistic=gcomp.ml, R=resamples)

We can recover a point estimate  of the marginal effect for A vs. C in
the BC population. This is the average across the resamples:

# bootstrap mean of marginal A vs. C treatment effect estimate
hat.Delta.AC <- mean(boot.object$t)
hat.Delta.AC

## [1] -1.119884

Δ̂
(BC)

AC
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We use 1,000 resamples, as increasing further the number of resamples
produces minimal gains in estimation precision and accuracy

# non-parametric bootstrap with 1000 resamples
resamples <- 1000
boot.object <- boot::boot(data=AC.IPD, statistic=gcomp.ml, R=resamples)

We can recover a point estimate  of the marginal effect for A vs. C in
the BC population. This is the average across the resamples:

# bootstrap mean of marginal A vs. C treatment effect estimate
hat.Delta.AC <- mean(boot.object$t)
hat.Delta.AC

## [1] -1.119884

An estimate of the variance is the sample variance across the resamples:

# bootstrap variance of A vs. C treatment effect estimate   
hat.var.Delta.AC <- var(boot.object$t)
hat.var.Delta.AC

##            [,1]
## [1,] 0.09622426

Δ̂
(BC)

AC

43 / 55



Bayesian parametric G-computation
Fit the Q-model using Markov chain Monte Carlo (MCMC). We use default
"weakly informative" priors, 2 Markov chains with 4,000 iterations each
(2,000 warmup), which gives  iterations in total for the analysis.

# outcome logistic regression fitted to IPD using MCMC (Stan)  
outcome.model <- stan_glm(y~X3+X4+trt*X1+trt*X2, data=AC.IPD, family=binomial, 
                          algorithm="sampling", iter=4000, warmup=2000, chains=2

L = 4000
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Bayesian parametric G-computation
Fit the Q-model using Markov chain Monte Carlo (MCMC). We use default
"weakly informative" priors, 2 Markov chains with 4,000 iterations each
(2,000 warmup), which gives  iterations in total for the analysis.

We now marginalize over the joint posterior distribution of the conditional
regression parameters , as well as the joint BC covariate distribution

We draw a vector  of size  of predicted outcomes under each
intervention  from its posterior predictive distribution:

# outcome logistic regression fitted to IPD using MCMC (Stan)  
outcome.model <- stan_glm(y~X3+X4+trt*X1+trt*X2, data=AC.IPD, family=binomial, 
                          algorithm="sampling", iter=4000, warmup=2000, chains=2

L = 4000

β

y∗
t∗ N ∗

t∗ ∈ {A,C}

p(y∗
t∗ ∣ DAC) = ∫

β

p(y∗
t∗ ∣ β)p(β ∣ DAC)dβ

= ∫
x∗

p(y∗ ∣ t∗, x∗,DAC)p(x∗ ∣ DAC)dx∗

= ∫
x∗

∫
β

p(y∗ ∣ t∗, x∗, β)p(x∗ ∣ β)p(β ∣ DAC)dβdx∗
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The integrals can be approximated numerically using MCMC sampling

Leaving the simulated covariates at their set values, we fix the value of
treatment to create counterfactual datasets under A and C
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The integrals can be approximated numerically using MCMC sampling

Leaving the simulated covariates at their set values, we fix the value of
treatment to create counterfactual datasets under A and C

Where all simulated subjects are under treatment A, the -th draw of the
conditional expectation for subject  is:

Above,  is the -th posterior draw of the regression
coefficients

Where all simulated subjects are set to treatment , the -th draw of the
conditional expectation for subject  is:
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The integrals can be approximated numerically using MCMC sampling

Leaving the simulated covariates at their set values, we fix the value of
treatment to create counterfactual datasets under A and C

Where all simulated subjects are under treatment A, the -th draw of the
conditional expectation for subject  is:

Above,  is the -th posterior draw of the regression
coefficients

Where all simulated subjects are set to treatment , the -th draw of the
conditional expectation for subject  is:

These are used to impute the individual-level outcomes as independent
draws from their posterior predictive distribution at each iteration, e.g. for
logistic regression:
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Producing draws from the posterior predictive distribution of outcomes is
fairly simple using the package rstanarm:

# draw binary responses from posterior predictive distribution
# LxN* matrix of posterior predictive draws under A
y.star.A <- posterior_predict(outcome.model, newdata=data.trtA) 
# LxN* matrix of posterior predictive draws under C
y.star.C <- posterior_predict(outcome.model, newdata=data.trtC)
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Producing draws from the posterior predictive distribution of outcomes is
fairly simple using the package rstanarm:

# draw binary responses from posterior predictive distribution
# LxN* matrix of posterior predictive draws under A
y.star.A <- posterior_predict(outcome.model, newdata=data.trtA) 
# LxN* matrix of posterior predictive draws under C
y.star.C <- posterior_predict(outcome.model, newdata=data.trtC)

For the -th draw (the -th row of each matrix), the A vs. C marginal
treatment effect estimate is:
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Producing draws from the posterior predictive distribution of outcomes is
fairly simple using the package rstanarm:

# draw binary responses from posterior predictive distribution
# LxN* matrix of posterior predictive draws under A
y.star.A <- posterior_predict(outcome.model, newdata=data.trtA) 
# LxN* matrix of posterior predictive draws under C
y.star.C <- posterior_predict(outcome.model, newdata=data.trtC)

For the -th draw (the -th row of each matrix), the A vs. C marginal
treatment effect estimate is:

We average out the imputed outcome predictions in each draw over the
rows and take the difference in the means on a suitably transformed scale:

# compute marginal log-odds ratio for A vs. C for each MCMC sample
# by transforming from probability to linear predictor scale  
hat.delta.AC <- qlogis(rowMeans(y.star.A)) - qlogis(rowMeans(y.star.C))
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Producing draws from the posterior predictive distribution of outcomes is
fairly simple using the package rstanarm:

# draw binary responses from posterior predictive distribution
# LxN* matrix of posterior predictive draws under A
y.star.A <- posterior_predict(outcome.model, newdata=data.trtA) 
# LxN* matrix of posterior predictive draws under C
y.star.C <- posterior_predict(outcome.model, newdata=data.trtC)

For the -th draw (the -th row of each matrix), the A vs. C marginal
treatment effect estimate is:

We average out the imputed outcome predictions in each draw over the
rows and take the difference in the means on a suitably transformed scale:

# compute marginal log-odds ratio for A vs. C for each MCMC sample
# by transforming from probability to linear predictor scale  
hat.delta.AC <- qlogis(rowMeans(y.star.A)) - qlogis(rowMeans(y.star.C))

The average and variance of the marginal effect can be derived empirically
from the draws, which approximate the posterior distribution:

hat.Delta.AC <- mean(hat.delta.AC) # average over samples
hat.var.Delta.AC <- var(hat.delta.AC) # sample variance
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